Abstract

There is evidence that the plasma membrane (PM) permeability alterations might be involved in plant salt tolerance. This review presents several lines of evidence demonstrating that PM permeability is correlated with salt tolerance in plants. PM injury and hence changes in permeability in salt sensitive plants is brought about by ionic effects as well as oxidative stress induced by salt imposition. It is documented that salinity enhances lipid peroxidation as well as protein oxidative damage, which in turn induces permeability impairment. PM protection, and thus retained permeability, in tolerant plants under salt imposition could be achieved through increasing antioxidative systems and thereby reducing lipid peroxidation and protein oxidative damage of PM. It appears that specific membrane proteins and/or lipids are constitutive or induced under salinity, which may contribute to maintenance of membrane structure and function in salt tolerant plant species. Furthermore, protecting agents (e.g., glycinebetaine, proline, polyamines, trehalose, sorbitol, mannitol) accumulated in salt tolerant species/cultivars may also contribute to PM stabilization and protection under salinity. Based on the presented evidence that PM permeability correlates with plant salt tolerance, we suggest that PM permeability is an easy and useful parameter for selection of genotypes of agriculture crops adapted to salt stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.