Abstract

The mammalian plasma membrane (PM) NADH-oxidoreductase (PMOR) system is a multi-enzyme complex located in the plasma membrane of all eukaryotic cells, harboring at least two distinct activities, the plasma membrane NADH-ferricyanide reductase and the NADH-oxidase. To assess the behaviour of the two activities of the PMOR system, we measured the NADH-ferricyanide reductase and NADH-oxidase activities in fibroblast cell lines derived from patients carrying a mitochondrial DNA (mtDNA) G11778A mutation. We also measured the two activities in other cell lines, the HL-60 and HeLa (S3) lines, as well as in rho0 cells (cells devoid of mtDNA) generated from those lines and the fibroblast cells. These rho0 cells consequently lack oxidative phosphorylation and rely on anaerobic glycolysis for their ATP need. We have proposed that in rho0 cells, at least in part, up-regulation of the PMOR is a necessity to maintain the NAD+/NADH ratio, and a pre-requisite for cell growth and viability. We show here that the PM NADH-ferricyanide reductase activity was up-regulated in HL-AV2 (HL-60 rho0) cell lines, but not in the other rho0 and mtDNA mutant lines. The plasma membrane NADH oxidase activity was found to be up-regulated in both HL-AV2 and HeLa rho0 cell lines, but not significantly in the fibroblast rho0 and G11778A lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call