Abstract

Most bacteria have cell wall peptidoglycan surrounding their plasma membranes. The essential cell wall provides a scaffold for the envelope, protection against turgor pressure and is a proven drug target. Synthesis of the cell wall involves reactions that span cytoplasmic and periplasmic compartments. Bacteria carry out the last steps of cell wall synthesis along their plasma membrane. The plasma membrane in bacteria is heterogeneous and contains membrane compartments. Here, I outline findings that highlight the emerging notion that plasma membrane compartments and the cell wall peptidoglycan are functionally intertwined. I start by providing models of cell wall synthesis compartmentalization within the plasma membrane in mycobacteria, Escherichia coli, and Bacillus subtilis. Then, I revisit literature that supports a role for the plasma membrane and its lipids in modulating enzymatic reactions that synthesize cell wall precursors. I also elaborate on what is known about bacterial lateral organization of the plasma membrane and the mechanisms by which organization is established and maintained. Finally, I discuss the implications of cell wall partitioning in bacteria and highlight how targeting plasma membrane compartmentalization serves as a way to disrupt cell wall synthesis in diverse species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call