Abstract

Abstract In many cell types, the rise in cytosolic Ca2+ due to opening of Ca2+ release-activated Ca2+ (CRAC) channels drives a plethora of responses, including secretion, motility, energy production, and gene expression. The amplitude and time course of the cytosolic Ca2+ rise is shaped by the rates of Ca2+ entry into and removal from the cytosol. However, an extended bulk Ca2+ rise is toxic to cells. Here, we show that the plasma membrane Ca2+ ATPase (PMCA) pump plays a major role in preventing a prolonged cytosolic Ca2+ signal following CRAC channel activation. Ca2+ entry through CRAC channels leads to a sustained sub-plasmalemmal Ca2+ rise but bulk Ca2+ is kept low by the activity of PMCA4b. Despite the low cytosolic Ca2+, membrane permeability to Ca2+ is still elevated and Ca2+ continues to enter through CRAC channels. Ca2+-dependent NFAT activation, driven by Ca2+ nanodomains near the open channels, is maintained despite the return of bulk Ca2+ to near pre-stimulation levels. Our data reveal a central role for PMCA4b in determining the pattern of a functional Ca2+ signal and in sharpening local Ca2+ gradients near CRAC channels, whilst protecting cells from a toxic Ca2+ overload.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call