Abstract

The plasma membrane Ca(2+)-pump (PMCA) is a key element in the removal of intracellular Ca2+. A number of PMCA pumps, encoded by a multigenic family and differing in their regulatory domains, also exist in the neuronal cells. We discuss here an idea regarding a new, higher level of specialization of PMCA protein isoforms with different sensitivities toward phospholipids and calmodulin. The idea is based on the kinetic data from PMCA stimulation by acidic phospholipids, with a combination of results describing an alternative RNA splicing at site A and C coding of regulatory domains of protein. The resulting complex modulation of the Ca(2+)-pump underlies the specific cellular requirements for Ca2+ homeostasis in a tissue-selective manner and is regulated by the level and spatial distribution of enzyme isoforms as well as by the level of their regulatory factors. The possible role of PMCA protein in the neuronal injury is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.