Abstract
Adenosine triphosphatases activated by calcium or magnesium have been demonstrated on the outer surface of rat peritoneal mast cells and macrophages. The plasma membrane ATPases in the two types of cells have similar but not identical properties. Mg 2+ is somewhat more effective than Ca 2+ in stimulating both the enzymes. They are not influenced by sodium and potassium and not inhibited by ouabain and oligomycin. Ethacrynic acid inhibits both, but the mast cell enzyme is more sensitive to it. The enzyme on the macrophage has five to thirty-seven times higher activity (average seventeen times) than that on the mast cell. The apparent K m of the enzymes in intact cells, incubated with adenosine triphosphate for 5 min, is estimated to be 36 μM for mast cells and 30 μM for macrophages. The optimal pH for the mast cell and the macrophage enzymes is 6.7 and 7.1 respectively. The activities of the two enzymes rise similarly with temperature up to 37° but differ at 47°, the macrophage enzyme being less active at this temperature than at 37°. Phosphatidyl serine, which stimulates anaphylactic and dextran-induced histamine release, causes about 40 per cent stimulation of the plasma membrane ATPase of mast cells in the absence of Ca 2+ and Mg 2+ but has no appreciable effect in their presence. No change in the mast cell enzyme could, however, be observed in relation to histamine release induced by dextran, compound 48 80 and ATP. But ethacrynic acid, which in 1 mM concentration inhibits 50 per cent of the mast cell enzyme activity, also causes pronounced inhibition of histamine release induced by all the three agents in the same concentration. The inhibition is not influenced by the presence of glucose, suggesting that ethacrynic acid does not inhibit histamine release by blocking energy metabolism. Ethacrynic acid apparently acts at another site. The site of action could very well be plasma membrane ATPase. There is also a correlation between the inhibition of the mast cell enzyme by sodium fluoride and lack of calcium and their inhibitory effect on histamine release. The possible involvement of the plasma membrane ATPase of mast cells in the process of exocytosis leading to histamine release is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.