Abstract

Objectives: A major problem for wound healing is contamination with bacteria, often resulting in biofilm formation and wound infection, which, in turn, needs immediate intervention such as surgical debridement and through irrigation. A topical treatment with cold atmospheric pressure plasma (CAP) for wound disinfection may present an alternative and less painful approach.Methods: This study investigated the antibacterial effects of a cold atmospheric pressure argon plasma jet (kINPen® MED) as a CAP source, using the three-dimensional Staphylococcus aureus immunocompetent biofilm system hpBIOM in addition to a standard planktonic test. Furthermore, skin cell compatibility was evaluated using a keratinocyte (HaCat) model.Results: CAP treatment (0–240 s) followed by incubation (15, 120 min) within the CAP-treated media showed slight bactericidal efficacy under planktonic conditions but no effect on biofilms. However, indirect CAP treatment of keratinocytes performed under the same conditions resulted in a significant decrease in metabolic activity. Short CAP treatment and exposure time (30 s; 15 min) induced a slight increase in the metabolic activity; however, longer treatments and/or exposure times led to pronounced reductions up to 100%. These effects could partially be reversed by addition of catalase, indicating a dominant role of CAP-generated hydrogen peroxide.Conclusions: These results indicate that plasma treatment does not lead to the desired disinfection or significant reduction in the bacterial burden of Staphylococcus aureus in a wet milieu or in biofilms. Thus, treatment with CAP could not be recommended as a single anti-bacterial therapy for wounds but could be used to support standard treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.