Abstract

Continuum kinetic simulations of plasmas, where particle distribution functions are directly discretized in phase-space, permit fully kinetic simulations without the statistical noise of particle-in-cell methods. Recent advances in numerical algorithms have made continuum kinetic simulations computationally competitive. This work presents a continuum kinetic description of high-fidelity wall boundary conditions that utilize the readily available particle distribution function without coupling to additional physical models. The boundary condition is realized through a reflection function that can capture a wide range of cases from simple specular reflection to more involved first principles models. While the framework is usable for various numerical methods and boundary conditions, this work focuses on the discontinuous Galerkin implementation of electron emission using a first-principles quantum-mechanical model. Presented results demonstrate effects of electron emission from a dielectric material on formation of a classical plasma sheath.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.