Abstract

ObjectiveWe aimed to identify a lipidic profile associated with type 2 diabetes mellitus (T2DM) development in coronary heart disease (CHD) patients, to provide a new, highly sensitive model which could be used in clinical practice to identify patients at T2DM risk.MethodsThis study considered the 462 patients of the CORDIOPREV study (CHD patients) who were not diabetic at the beginning of the intervention. In total, 107 of them developed T2DM after a median follow-up of 60 months. They were diagnosed using the American Diabetes Association criteria. A novel lipidomic methodology employing liquid chromatography (LC) separation followed by HESI, and detection by mass spectrometry (MS) was used to annotate the lipids at the isomer level. The patients were then classified into a Training and a Validation Set (60–40). Next, a Random Survival Forest (RSF) was carried out to detect the lipidic isomers with the lowest prediction error, these lipids were then used to build a Lipidomic Risk (LR) score which was evaluated through a Cox. Finally, a production model combining the clinical variables of interest, and the lipidic species was carried out.ResultsLC-tandem MS annotated 440 lipid species. From those, the RSF identified 15 lipid species with the lowest prediction error. These lipids were combined in an LR score which showed association with the development of T2DM. The LR hazard ratio per unit standard deviation was 2.87 and 1.43, in the Training and Validation Set respectively. Likewise, patients with higher LR Score values had lower insulin sensitivity (P = 0.006) and higher liver insulin resistance (P = 0.005). The receiver operating characteristic (ROC) curve obtained by combining clinical variables and the selected lipidic isomers using a generalised lineal model had an area under the curve (AUC) of 81.3%.ConclusionOur study showed the potential of comprehensive lipidomic analysis in identifying patients at risk of developing T2DM. In addition, the lipid species combined with clinical variables provided a new, highly sensitive model which can be used in clinical practice to identify patients at T2DM risk. Moreover, these results also indicate that we need to look closely at isomers to understand the role of this specific compound in T2DM development.Trials registration NCT00924937.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.