Abstract
Development in science and technology has made human life much simpler, but evolution and progress of time as well as increasing human demand have generated problems related to energy, health [1], etc. Progress in science and technology is trying to solve these issues to make the human life more comfortable. Growing requirement of biomedical devices, replacement of body parts after their failure, body implants [2, 3], bio-separation, sterilizations [4, 5], biosensors, etc. [6, 7], have shown need of development of advance smart materials (biomaterials). The choice of any material to be used as biomaterial/biomedical applications [8] depends on physical, chemical, surface, and biological properties, i.e., the presence of functional groups, surface free energy, hydrophilicity, surface morphology affects use of any material as biomaterial [9]. In other words, materials having high bio-adoptability and biocompatibility can only be used as biomaterials [10, 11]. Polymers arise as a suitable alternative of conventional biomaterial from last few decades, for synthesis of important biomaterials in modern manufacturing processes as they offer wide varieties of physical, chemical, biological, mechanical, and elastic properties with good processability. None of the normally available polymers possess surface and chemical properties required for many of biomedical applications. Nanomaterials and low-temperature plasma processing offer a novel route for surface and chemical modification in controlled manner without affecting their bulk properties [12]. Plasama processing can be utilized in various pathways to control the desired properties of modified materials, makes plasma so important that we can say “Plasma will future: Plasma for mankind.” Present work shows efficient and relevant route for synthesis of nanobiomaterials using nanotechnology and plasma processing to fabricate biomedical devices for biomedical applications [13].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.