Abstract

The work presented in this article is devoted to time-resolved diagnostics of non-linear effects observed during the afterglow plasma decay of a 14 GHz electron cyclotron resonance ion source operated in pulsed mode. Plasma instabilities that cause perturbations of the extracted ion current during the decay were observed and studied. It is shown that these perturbations are associated with precipitation of high energy electrons along the magnetic field lines and strong bursts of bremsstrahlung emission. The effect of ion source settings on the onset of the observed instabilities was investigated. Based on the experimental data and estimated plasma properties, it is assumed that the instabilities are of cyclotron type. The conclusion is supported by a comparison to other types of plasma devices which exhibit similar characteristics but which operate in a different plasma confinement regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call