Abstract
This investigation employs advanced computational techniques to ascertain novel and precise solitary wave solutions of the Camassa–Holm ([Formula: see text]) equation, a partial differential equation governing wave phenomena in one-dimensional media. Originally designed for the representation of shallow water waves, the [Formula: see text] equation has exhibited versatility across various disciplines, including nonlinear optics and elasticity theory. It intricately delineates the interplay between nonlinear and dispersive effects in wave systems, with nonlinearity arising from component interactions and dispersion rooted in the temporal spreading of waves. Furthermore, the [Formula: see text] equation governs the spatiotemporal evolution of wave profiles, encompassing both nonlinear and dispersive influences. Notably, the equation allows for soliton solutions — localized wave packets sustaining their form over extended distances. The identification of precise solitary wave solutions holds paramount significance for comprehending the [Formula: see text] equation’s behavior in diverse physical contexts, such as fluid dynamics and nonlinear optics. Moreover, this study establishes a correlation between the investigated model and plasma physics, demonstrating the efficacy and efficiency of the employed computational techniques through benchmarking against alternative computational methods. This augmentation underscores the broader relevance of the [Formula: see text] equation, extending its applicability to provide insights into wave phenomena analogous to those encountered in plasma physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.