Abstract

In this work, we developed Manganese and Titanium based oxide composites with oxygen defects (MnOx@aTiOy) via plasma processing as anodes of lithium ion batteries. By appropriately adjusting the defect concentration, the ion transport kinetics and electrical conductivity of the electrodes are significantly improved, showing stable capacity retention. Furthermore, the incremental capacity is further activated and long-term stable cycling performance is achieved, with a specific capacity of 829.5 mAh/g at 1 A/g after 2000 cycles. To scrutinize the lithium migration paths and energy barriers in MnO2 and Mn2O3, the density functional theory (DFT) calculations is performed to explore the lithium migration paths and energy barriers. Although the transformation of MnO2 into Mn2O3 through oxygen defects was initially surmised to inhibit Li ions along their standard routes, our results indicate quite the contrary. In fact, the composite's lithium diffusion rate saw a substantial increase. This can be accredited to the pronounced enhancement of conductivity and ion transport efficiency in the amorphous and porous TiOy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.