Abstract

With the goal of obtaining sustainable earth-abundant electrocatalyst materials displaying high performance in the hydrogen evolution reaction (HER), here we propose a facile one-pot plasma-induced electrochemical process for the fabrication of new core-shell structures of ultrathin MoS2 nanosheets engulfed within onion-like graphene nanosheets (OGNs@MoS2). The resultant OGNs@MoS2 structures not only increased the number of active sites of the semiconducting MoS2 nanosheets but also enhanced their conductivity. Our OGNs@MoS2 composites exhibited high HER performance, characterized by a low overpotential of 118 mV at a current density of 10 mA cm-2, a Tafel slope of 73 mV dec-1, and long-time stability of 105 s without degradation; this performance is much better than that of the sheet-like graphene-wrapped MoS2 composite GNs@MoS2 (182 mV, 82 mV dec-1) and is among the best ever reported for composites involving MoS2 and graphene nanosheets prepared through a simple one-batch process and using a low temperature and a short time for the HER. This approach appears to be an effective and simple strategy for tuning the morphologies of composites of graphene and transition metal dichalcogenide materials for a broad range of energy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call