Abstract

Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst-substrate binding to ensure long-term performance. Herein, vertical Ni-Co-P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni-Co-P/Ni3N cathode exhibits an ultra-low overpotential of 421 mV at 4000 mA cm-2, and the non-noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm-2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm-2. Under natural light, the solar-driven AEM electrolyzer operates at a current density up to 1585 mA cm-2 with a solar-to-hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an "atomic-scale soldering" effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere-level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.