Abstract

BackgroundFolate plays a pivotal role in DNA synthesis, repair, methylation and homocysteine (Hcy) metabolism. Therefore, alterations in the folate-mediated one-carbon metabolism may lead to abnormal methylation proliferation, increases of tumor/neoplasia and vein thrombosis/cardiovascular risk. The serine hydroxymethyhransferase (SHMT), methionine synthase (MS), methionine synthase reductase (MTRR) and cystathionine beta synthase (CBS) regulate key reactions in the folate and Hcy metabolism. Therefore, we investigated whether the genetic variants of the SHMT, MS, MTRR and CBS gene can affect plasma Hcy levels and are associated with breast cancer risk.MethodsGenotyping was performed by PCR-RFLP method. Plasma Hcy levels were measured by the fluorescence polarization immunoassay on samples of 96 cases and 85 controls.Results(a) The SHMT 1420 T, MS 2756G, MTRR 66G allele frequency distribution showed significant difference between case and controls (p < 0.01 ~ 0.05). (b) The concentration of plasma Hcy levels of SHMT 1420TT was significantly lower than that of the wild type, while the plasma Hcy levels of MS 2756GG, CBS 699TT/1080TT significantly higher than that of the wild type both in case and controls. The plasma Hcy levels of MTRR 66GG was significantly higher than that of wild type in cases. The plasma Hcy levels of the same genotype in cases were significantly higher than those of controls except SHMT 1420CC, MS 2756AA, MTRR 66GG; (c) Multivariate Logistic regression analysis showed that SHMT C1420T (OR = 0.527, 95% CI = 0.55 ~ 1.24), MS A2756G (OR = 2.32, 95% CI = 0.29 ~ 0.82), MTRR A66G (OR = 1.84, 95% CI = 0.25 ~ 1.66) polymorphism is significantly associated with breast cancer risk. And elevated plasma Hcy levels were significantly linked to increased risk of breast cancer (adjusted OR = 4.45, 95% CI = 1.89-6.24 for the highest tertile as compared with the lowest tertile).ConclusionsThe current study results seem to suggest a possibility that SHMT C1420T mutation may be negatively correlated with breast cancer susceptibility; while MS A2756G and MTRR A66G mutation may be positively associated with breast cancer risk. SHMT C1420T, MS A2756G, MTRR A66G, CBS C1080T, CBS C699T locus mutation may be factors affecting plasma levels of Hcy. The plasma Hcy levels could be metabolic risk factor for breast cancer risk to a certain extent.

Highlights

  • Folate plays a pivotal role in DNA synthesis, repair, methylation and homocysteine (Hcy) metabolism

  • Our study showed a significant interaction between the methionine synthase (MS) A2756G or Methionine synthase reductase (MTRR) A66G and risk of breast cancer

  • In summary, we have shown a significant association among MS, MTRR, serine hydroxymethyhransferase (SHMT), cystathionine beta synthase (CBS) polymorphisms, elevated plasma Hcy levels and increased risk of breast cancer

Read more

Summary

Introduction

Folate plays a pivotal role in DNA synthesis, repair, methylation and homocysteine (Hcy) metabolism. The serine hydroxymethyhransferase (SHMT), methionine synthase (MS), methionine synthase reductase (MTRR) and cystathionine beta synthase (CBS) regulate key reactions in the folate and Hcy metabolism. We investigated whether the genetic variants of the SHMT, MS, MTRR and CBS gene can affect plasma Hcy levels and are associated with breast cancer risk. About 1.2 million women suffer from breast cancer in the world every year, and China is one of countries with most rapid increase in incidence of the disease, which is already up to 200,000 persons per year, c. High-risk populations include those with a family history of breast cancer. Two prospective studies have since shown that the increased risk of breast cancer associated with low folate and high alcohol intake is limited to estrogen receptor-negative breast cancer [4,5]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.