Abstract

Plasma optics enables the manipulation of highly intense laser beams. Now, plasma holograms, involving the creation of a modulated plasma surface on a solid target, are reported — for example, plasma hologram fork gratings produce optical vortices. The manipulation of ultraintense laser beams gets increasingly challenging with growing laser peak power, as the breakdown of conventional optics imposes ever larger beam diameters. Using compact plasma-based optical elements to control or even generate such beams1,2,3,4 is a promising approach, since plasmas can sustain considerable light intensities. We introduce a new type of plasma optics, called plasma holograms, by initiating plasma expansion on a flat solid target with a holographic prepulse beam focus. A modulated plasma surface then grows out of the target after ionization, which can be used for several picoseconds to diffract and spatially shape ultraintense laser beams. On the basis of this concept, we demonstrate the generation of fork plasma gratings, which we use to induce optical vortices on a femtosecond laser beam as well as its high-order harmonics, at intensities exceeding 1019 W cm−2. These plasma holograms open up a whole new range of possibilities for the manipulation of ultraintense lasers and the generation of structured coherent short-wavelength sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.