Abstract

A model of forced magnetic reconnection in a force-free magnetic field is considered, which allows calculation of the magnetic energy release during the current sheet reconnection. The dependence of this energy on characteristics of the magnetic configuration has been studied, and it was found that the released energy becomes very large when the field is near the marginal tearing stability. A persistent plasma heating provided by ongoing external driving and internal reconnection is also derived. It shows a typical relaxation-type dependence on the driving frequency, with dissipation becoming most efficient when the time-scales of the driving and reconnection are comparable. Possible implications of the obtained results for the problem of solar coronal heating are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.