Abstract
Quantification of plasma free metanephrine (MN) and normetanephrine (NMN) is considered to be the most accurate test for the clinical chemical diagnosis of pheochromocytoma and follow-up of pheochromocytoma patients. Current methods involve laborious, time-consuming, offline sample preparation, coupled with relatively nonspecific detection. Our aim was to develop a rapid, sensitive, and highly selective automated method for plasma free MNs in the nanomole per liter range. We used online solid-phase extraction coupled with HPLC-tandem mass spectrometric detection (XLC-MS/MS). Fifty microliters plasma equivalent was prepurified by automated online solid-phase extraction, using weak cation exchange cartridges. Chromatographic separation of the analytes and deuterated analogs was achieved by hydrophilic interaction chromatography. Mass spectrometric detection was performed in the multiple reaction monitoring mode using a quadrupole tandem mass spectrometer in positive electrospray ionization mode. Total run-time including sample cleanup was 8 min. Intra- and interassay analytical variation (CV) varied from 2.0% to 4.7% and 1.6% to 13.5%, respectively, whereas biological intra- and interday variation ranged from 9.4% to 45.0% and 8.4% to 23.2%. Linearity in the 0 to 20 nmol/L calibration range was excellent (R(2) > 0.99). For all compounds, recoveries ranged from 74.5% to 99.6%, and detection limits were <0.10 nmol/L. Reference intervals for 120 healthy adults were 0.07 to 0.33 nmol/L (MN), 0.23 to 1.07 nmol/L (NMN), and <0.17 nmol/L (3-methoxytyramine). This automated high-throughput XLC-MS/MS method for the measurement of plasma free MNs is precise and linear, with short analysis time and low variable costs. The method is attractive for routine diagnosis of pheochromocytoma because of its high analytical sensitivity, the analytical power of MS/MS, and the high diagnostic accuracy of free MNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.