Abstract

Abstract The effect of nonpolymer-forming plasma (e.g., plasma of hydrogen, helium, argon, nitrogen) can be viewed as the following two reactions: 1) reaction of active species with polymer, and 2) formation of free radicals in polymer which is mainly due to the UV emitted by the plasma. The incorporation of nitrogen into the polymer surface by N2 plasma and the surface oxidation by O2 plasma are typical examples of the first effect. The latter effect generally leads to incorporation of oxygen in the form of carbonyl and hydroxyl and to some degree of cross-linking depending on the type of substrate; however, the degradation of polymer at the surface manifested by weight loss occurs in nearly all cases when polymers are exposed to plasma for a prolonged period of time. The effects of polymer-forming plasma is predominated by the deposition of polymer (plasma polymer); however, with some plasma-susceptible polymer substrates the effect of UV emission from polymer-forming plasma cannot be neglected. The mechanism of polymer formation can be explained by the stepwise reaction of active species and/or of an active specie with a molecule, and the chain addition polymerization of some organic compounds (e.g., vinyl monomers) is not the main route of polymer formation. Plasma polymers contain appreciable amount of trapped free radicals; however, the concentration is highly dependent on the chemical structure of the monomer. In plasma polymerization, 1) triple bond and/or aromatic structure, 2) double bond and/or cyclic structure, and 3) saturated structure are three major functions which determine the rate of polymer formation and the properties of plasma polymers. The changes of some properties of plasma polymers with time are directly related to the concentration of trapped free radicals in plasma polymers. The amount of trapped free radicals in a plasma polymer is also influenced by the conditions of discharge; however, the UV irradiation from the polymer-forming plasma is not the main cause of these free radicals. Excess amount of free radicals are trapped during the process of polymer formation (rather than forming free radicals in the deposited polymer by UV irradiation). The properties of a plasma polymer is generally different from what one might expect from the chemical structure of the monomer, due to the fragmentation of atoms and/or functions during the polymerization process. This is another important factor to be considered for the modification of polymer surfaces by plasma polymerization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.