Abstract

Context. Supergranules create a peak in the spatial spectrum of photospheric velocity features. Even though they have some properties of convection cells, their origin is still being debated in the literature. The time–distance helioseismology constitutes a method that is suitable for investigating the deep structure of supergranules. Aims. Our aim is to construct the model of the flows in the average supergranular cell using fully consistent time–distance inverse methodology. Methods. We used the Multi-Channel Subtractive Optimally Localised Averaging inversion method with regularisation of the cross-talk. We combined the difference and the mean travel-time averaging geometries. We applied this methodology to travel-time maps averaged over more than 104 individual supergranular cells. These cells were detected automatically in travel-time maps computed for 64 quiet days around the disc centre. The ensemble averaging method allows us to significantly improve the signal-to-noise ratio and to obtain a clear picture of the flows in the average supergranule. Results. We found near-surface divergent horizontal flows which quickly and monotonously weakened with depth; they became particularly weak at the depth of about 7 Mm, where they even apparently switched sign. The amplitude of the ‘reversed’ flow was comparable to the background flows. The inverted vertical flows and sound-speed perturbations were spoiled by unknown systematic errors. To learn about the vertical component, we integrated the continuity equation from the surface. The derived estimates of the vertical flow depicted a sub-surface increase from about 5 m s−1 at the surface to about 35 m s−1 at the depth of about 3 Mm followed by a monotonous decrease to greater depths. The vertical flow remained positive (an upflow) and became indistinguishable from the background at the depth of about 15 Mm. We further detected a systematic flow in the longitudinal direction. The course of this systematic flow with depth agrees well with the model of the solar rotation in the sub-surface layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call