Abstract

In this paper we examine a total of 16 dipolarization events that were observed by THEMIS spacecraft in space close to geosynchronous orbit, r . For the identified events, we examine the characteristics of the plasma flows and associated bubbles as defined based on , where p is the plasma pressure and V the volume of unit magnetic flux. First, we find that the flow speed in the near-geosynchronous region is very low, mostly within a few tens of km/s, except for a very few events for which the flow can rise up to ~200 km/s but only very near the dipolarization onset time. Second, the bubble parameter, , decreases by a much smaller factor after the dipolarization onset than for the events in the farther out tail region. We suggest that the magnetic dipolarization in the near-geosynchronous region generates or is associated with only very weak plasma bubbles. Such bubbles in the near-geosynchronous region would penetrate earthward only by a small distance before they stop at an equilibrium position or drift around the Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.