Abstract

The effect of a background plasma on a dielectric Cherenkov maser is examined by solving the linearized, beam-plasma, dielectric-lined waveguide dispersion relation. The results indicate that introduction of the background plasma can produce a higher spatial growth rate for the beam-waveguide instability and can reduce the electric field at the dielectric surface when compared to the system with no background plasma present. It is also found that for some sets of waveguide parameters, the TM/sub 0n/ electromagnetic modes can propagate frequencies that are below the background plasma frequency in the system. These modes have a finite off frequency and are different from the Trivelpiece-Gould modes for the system.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.