Abstract

Commercial dull polyethylene terephthalate (PET) fabric treated by radio frequency (13.56 MHz) plasma and further coated with perfluoroalkyl methacrylate copolymer C6 displays much highly durable hydrophobicity and oleophobicity. The as-prepared fabric exhibited a water contact angle above 170°, a water spray rating of 80 (ISO 3), and oil resistance ratings of B and C separately for different oil composition grades after 10 washing cycles, which were two levels higher than the untreated and C6-coated PET[TiO2] fabric. The organic component PET was more prone to etching than TiO2, which created a waviness structure and exposed prominent TiO2 nanoparticles on the PET fiber surface. The relative atom ratio O and Ti increased through energy-dispersive X-ray spectroscopy spectra and X-ray photoelectron spectroscopy analysis. This result indicates that the exposure of TiO2 and the introduction of reactive polar groups such as O=C-O on the fiber surface contributed to react with C6 and improved the washing durability. In general, such coating technology may provide a simple benign technique for constructing materials with physicochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.