Abstract

The mucosal-dominant variant of pemphigus vulgaris (MPV) is an autoimmune disease characterized by oral mucosal blistering and circulating pathogenic IgG antibodies against desmoglein 3 (Dsg3), resulting in life-threatening bullae and erosion formation. Recently, microRNAs (miRNAs) have emerged as promising players in the diagnosis and prognosis of several pathological states. For the first time, we have identified a different expression profile of miRNAs isolated from plasma-derived exosomes (P-EVs) of MPV patients positive for antibodies against Dsg3 (Dsg3-positive) compared to healthy controls. Moreover, a dysregulated miRNA profile was confirmed in MPV tissue biopsies. In particular, a strong downregulation of the miR-148a-3p expression level in P-EVs of MPV patients compared to healthy controls was demonstrated. Bioinformatics prediction analysis identifies metalloproteinase-7 (MMP7) as a potential miR-148a-3p target. An in vitro acantholysis model revealed that the miR-148a-3p expression level was dramatically downregulated after treatment with Dsg3 autoantibodies, with a concomitant increase in MMP7 expression. The increased expression of MMP7 leads to the disruption of intercellular and/or extracellular matrix adhesion in an in vitro cellular model of MPV, with subsequent cell dissociation. Overexpression of miR-148a-3p prevented cell dissociation and regressed MMP7 upregulation. Our findings suggest a pivotal role of P-EV cargo in regulating molecular mechanisms involved in MPV pathogenesis and indicate them as potential MPV therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call