Abstract
Etching of TaN gates on high-k dielectrics (HfO2 or HfAlO) is investigated using HBr/Cl2 chemistry in a decoupled plasma source (DPS). The patterning sequence includes 248-nm lithography, plasma photoresist trimming, etching of a SiN-SiO2 hard mask, and photoresist stripping, followed by TaN etching. TaN etching is studied by design of experiment (DOE) with four variables using a linear model with interactions. It is found that at a fixed substrate temperature and wafer chuck power, etch critical dimensions (CD) gain decreases with decreasing HBr/Cl2 flow rate ratio and pressure and with increasing source power and total gas flow rate. Based on these DOE findings, subsequent optimization is performed and a three-step etching process is developed; a main feature of the process is progressively increasing HBr/Cl2 flow rate ratio. The optimized process provides etch CD gain within 2 nm and gate profile close to vertical and reliable etch-stop on high-k dielectric. This process is successfully applied to the fabrication of the 40-nm HfAlO/TaN gate stack p-MOSFETs with good electrical parameters
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.