Abstract

We theoretically investigate the nonlinear optical transmission through a cuprous oxide crystal for wavelengths that cover the series of highly excited excitons, observed in recent experiments. Since such Rydberg excitons have strong van der Waals interactions, they can dynamically break the conditions for resonant exciton creation and dramatically modify the refractive index of the material in a nonlinear manner. We explore this mechanism theoretically and determine its effects on the optical properties of a semiconductor for the case of degenerate pair-state asymptotes of Rydberg excitons in Cu_{2}O. Upon analyzing the additional effects of a dilute residual electron-hole plasma, we find quantitative agreement with previous transmission measurements, which provides strong indications for the enhancement of Rydberg-induced nonlinearities by surrounding free charges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.