Abstract

Low-temperature growth of carbon nanotubes (CNTs) has been claimed to provide a route towards chiral-selective growth, enabling a host of applications. In this contribution, we employ reactive molecular dynamics simulations to demonstrate how plasma-based deposition allows such low-temperature growth. We first show how ion bombardment during the growth affects the carbon dissolution and precipitation process. We then continue to demonstrate how a narrow ion energy window allows CNT growth at 500K. Finally, we also show how CNTs in contrast cannot be grown in thermal CVD at this low temperature, but only at high temperature, in agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.