Abstract

Amorphous silicon carbide (a-SiC) films, deposited by plasma-enhanced chemical vapor deposition (PECVD), have been evaluated as insulating coatings for implantable microelectrodes. The a-SiC was deposited on platinum or iridium wire for measurement of electrical leakage through the coating in phosphate-buffered saline (PBS, pH 7.4). Low leakage currents of <10(-11) A were observed over a +/-5-V bias. The electronic resistivity of a-SiC was 3 x 10(13) Omega-cm. Dissolution rates of a-SiC in PBS at 37 and 90 degrees C were determined from changes in infrared absorption band intensities and compared with those of silicon nitride formed by low-pressure chemical vapor deposition (LPCVD). Dissolution rates of LPCVD silicon nitride were 2 nm/h and 0.4 nm/day at 90 and 37 degrees C, respectively, while a-SiC had a dissolution rate of 0.1 nm/h at 90 degrees C and no measurable dissolution at 37 degrees C. Biocompatibility was assessed by implanting a-SiC-coated quartz discs in the subcutaneous space of the New Zealand White rabbit. Histological evaluation showed no chronic inflammatory response and capsule thickness was comparable to silicone or uncoated quartz controls. Amorphous SiC-coated microelectrodes were implanted in the parietal cortex for periods up to 150 days and the cortical response evaluated by histological evaluation of neuronal viability at the implant site. The a-SiC was more stable in physiological saline than LPCVD Si(3)N(4) and well tolerated in the cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.