Abstract

Two-dimensional (2D) transition metal dichalcogenides are potential low dissipative semiconductor materials for nanoelectronic devices. Such applications require the deposition of these materials in their crystalline form and with controlled number of monolayers on large area substrates, preferably using deposition temperatures compatible with temperature sensitive structures. This paper presents a low temperature plasma-enhanced atomic layer deposition (PEALD) process for 2D WS2 based on a ternary reaction cycle consisting of consecutive WF6, H2 plasma, and H2S reactions. Strongly textured, nanocrystalline WS2 is grown at 300 °C. The composition and crystallinity of these layers depends on the PEALD process conditions, as understood by a model for the redox chemistry of this process. The H2 plasma is essential for the deposition of WS2 as it enables the reduction of −W6+Fx surface species. Nevertheless, the impact of subsurface reduction reactions needs to be minimized to obtain WS2 with well-controlled ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.