Abstract

Self-standing vertically oriented carbon nanostructures (VCNs) were synthesized using a large-scale microwave plasma under low-pressure conditions, employing methane as a carbon precursor. The influence of plasma operational and substrate conditions on nanostructure growth and morphology were systematically studied. Furthermore, post-synthesis N-doping of VCNs with nitrogen content of 2.4 at% N was achieved using an Ar-N2 microwave plasma. Plasma-enabled direct deposition of VCNs, both doped and un-doped, onto nickel foils has been accomplished. The assessment of the developed nanostructures as electrodes in high-frequency AC filtering capacitors, has demonstrated an overall capacitance of approximately 480 µF at 100 Hz, with a cut-off frequency of 4 kHz for a phase angle of −45°. The excellent electrochemical performance can be attributed to the appropriate structural and morphological properties peculiar for the directly deposited on nickel foil VCNs providing binder-free electrode fabrication, thus enhancing the electrode’s conductivity and charge transfer kinetics. This plasma-enabled approach for electrode design on a large scale, coupled with excellent filtering performance, paves the way for many applications in high-frequency scenarios, offering an environmentally friendly alternative to conventional electrolytic capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.