Abstract

An Nd-YAG laser (1064 nm, 120 mJ, 8 ns) was focused on various types of solid organic samples such as a black acrylic plate, a black polyvinyl chloride plastic sheet, and a methoxy polyaniline film coated on the surface of a glass substrate, under a surrounding air pressure of 2 Torr. A modulated plasma technique was used to study the mechanism of excitation of the emission of the organic material. As a result, we conclude that ablated atoms and molecules are excited by a shock-wave mechanism, similar to the case of hard samples such as metal. The ablation speed of hydrogen emission (H I 656.2 nm) was examined and the results show that the release speed of the ablated atoms is relatively low (less than Mach 10) and persists for a longer period of time (around 1 μs); this phenomenon can be understood by assuming that the soft target absorbs recoil energy, causing a low release speed of ablated atoms which would form the shock wave. This was overcome by placing a subtarget on the back of the soft sample so as to enhance the repelling force, thus increasing the release speed of the atoms. A possible application of the low-pressure plasma on an organic solid was demonstrated in the detection of chlorine in a black polyvinyl chloride plastic sheet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call