Abstract
Magnesium alloys are an exciting challenge for the biomaterials field given their well-established biodegradability and biocompatibility. However, when exposed to biological fluids, their rapid degradation and hydrogen release are the main drawbacks for clinical applications. This work aimed to investigate the influence of the current density applied during the plasma electrolytic oxidation (PEO) treatment on the durability of an AZ31 magnesium alloy. In particular, specific interest was directed to the degradation rate undergone by the PEO coating, obtained under two different current density conditions, when exposed to Hank’s solution at 37 °C to simulate the physiological environment, employing the techniques of potentiodynamic polarization and electrochemical impedance spectroscopy. Experimental results highlighted that the plasma electrolytic oxidation technique resulted in an improvement in the corrosion resistance of the magnesium alloy in the test solution. The current density affected the morphology of the coating. In particular, the anodic oxide coating obtained by applying the highest current density showed a higher thickness and fewer but larger pores, while the lowest current density generated a thinner PEO coating characterized by several but smaller pores. Surprisingly, the best corrosion resistance has been exhibited by the anodic oxide coating grown at the highest current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.