Abstract

Sustainable production of value-added fuels and chemicals from biomass faces enormous challenges for integration in zero-carbon-emissions technologies and circular economy. In this work, green and renewable solvents, polyethylene glycol 200 and glycerol, were used in a plasma-electrolytic liquefaction (PEL) system to electrically liquefy human feces in the absence of a catalyst. It is demonstrated that the plasma ignition during the liquefaction accelerated the conversion of feces (85.67% liquefaction yield within 12 min), and the intrinsic heating features of the PEL greatly reduced the energy consumption. The obtained biocrude oil at the optimized conditions contained 10.53% aldehydes, 5.39% ketones, 18.48% cyclic oxygen-containing compounds and others, with a high heating value of 28.10 MJ/kg. Further analysis of the PEL-converted products reveals that most of the chlorine in the feces was gasified, the metals were extracted into the solid residue, while ammonia was released. An evaluation of the developed plasma electrolytic feces liquefaction process was carried out and favorably compared with common liquefaction methods. Overall, the proposed approach may provide a new avenue for clean chemical production and sustainable resource recovery from human waste under benign process conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.