Abstract

Employing a magnetized plasma medium in the interaction region of a free-electron laser (FEL) offers the possibility of generating short wavelengths using moderate energy beams. Plasma in the presence of static magnetic field supports right and left circularly polarized electromagnetic modes. By superposition of these two modes, a linearly polarized electromagnetic mode is generated which can be employed as a plasma undulator in a FEL. This configuration has a higher tunability by controlling the plasma density on top of the -tubability of the conventional FELs. The roles of the axial magnetic field and plasma on the laser gain and the electron trajectories of an e-beam propagating through the plasma medium have been studied and new orbits of group (I, II, and III) have been found. Moreover, the stability of these orbits for different values of plasma frequencies has been investigated. It is shown that by increasing the axial guide magnetic field strength, the gain for orbits of group I trivially increase, while a decrease in gain has been obtained for orbits of group II and group III. In addition, it is found that with increasing the plasma frequency (or plasma density) the gain for orbits of group I and group II trivially decreases and shift to the lower cyclotron frequencies, while an increase in gain has been obtained for orbits of group III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.