Abstract
An arc-seed microwave plasma torch, which can run stably at low airflow rate (e.g., 0.393 l s−1) and produces an abundance of reactive atomic oxygen in its plasma effluent, is applied for studying the effects of atomic oxygen on bacterial spores in solution. Bacillus cereus was chosen as the biological agent. The experimental results show that the plasma effluent can penetrate into water to kill B. cereus spores. The kill time (i.e., 10-fold reduction time) is about 10 s at an exposure distance of 3 cm, 24 s at 4 cm, and 31 s at 5 cm. Morphological studies are performed via scanning electron and atomic force microscopes, which take two- and three-dimensional images of spores to record the changes in their morphological structures and shapes caused by the plasma effluent. The loss of appendages and exosporium in the structure as well as flattened cell shapes are observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.