Abstract
In this study, we characterize the properties of indium and tin laser-induced plasmas responsible for efficient high-order harmonics generation of the ultrashort pulses propagating through these media. The optimally formed plasma was determined using the analysis of the time-resolved variations in the spectral and morphological features of spreading indium and tin plasma components under different regimes of laser ablation. We report the measurements of plasma velocities under different regimes of ablation and correlate them with the optimal delay between the heating and probe laser pulses for the generation of harmonics with the highest yield. Electron temperatures and densities are determined using the integrated and time-resolved spectral measurements of plasmas. The resonance-enhanced harmonics are compared with other harmonics from the point of view of the modulation of plasma characteristics. The harmonics of 800 and 1200–2200 nm lasers and their second-harmonic fields were analyzed at optimal conditions of Sn and In plasma formation. The novelty of this work is the implementation of the diagnostics of the dynamics of plasma characteristics for the determination of the optimal plasma formation for harmonics generation. Such an approach allows for the demonstration of the maximal harmonic yield from the studied plasma and the definition of the various resonance-induced harmonic generation conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.