Abstract

The satellite low-latitude and midlatitude measurements of the disturbed postsunset plasma density and electron temperature at altitudes of ∼900 km have been compared with the data of incoherent scattering and high-altitude rocket launching at the corresponding local time. It has been found that plasma density disturbances are independently caused by the turbulent interaction between atmospheric masses of gas and plasma ascending from heated and not yet cooled ionospheric regions and cooling masses descending from protonospheric altitudes. Plasma regions with an energetically nonequilibrium vertical density distribution of the mixture of heavy ion impurity (O+) and major light ions (H+) can simultaneously appear, as a result of which the gradient-drift impurity instability is generated. If this instability is sufficiently developed, there appears an anomalous ion drift with the formation of real plasma regions of decreased density. All these phenomena generate different irregularities in a wide range of scales: from several tens or hundreds of meters to several hundreds of kilometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call