Abstract

The aim of this work is to characterize the ejection plume obtained by laser ablation of GaLaS (GLS) samples in order to better understand the ablation phenomena for optimizing the pulsed laser deposition of chalcogenide thin films. The dynamics of the plasma between target and substrate was investigated through time- and space-resolved optical emission spectroscopy. High-resolution optical spectra have been recorded in the UV–VIS range using a 500-mm focal length monochromator and a fast gate ICCD camera. From the space–time evolution of the optical signals, the velocities of various species (including neutrals and ions) have been derived. Using the relative intensity method, the space- and time-evolution of the excitation temperature and electronic density have been determined. A complex behavior of the laser ablation plasma has been revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call