Abstract

During direct current magnetron sputtering (dcMS) of thin films, the ion energy and flux are complex parameters that influence thin film growth and can be exploited to tailor their properties. The ion energy is generally controlled by the bias voltage applied at the substrate. The ion flux density however is controlled by more complex mechanisms.In this study, we look into magnetic-field-assisted dcMs, where a magnetic field applied in the deposition chamber by use of a solenoid coil at the substrate position, influences the energetic bombardment by Ar ions during deposition. Using this technique, CrFeCoNi multicomponent nitride thin films were grown on Si(100) substrates by varying the bias voltage and magnetic field systematically. Plasma diagnostics were performed by a Langmuir wire probe and a flat probe. On interpreting the data from the current-voltage curves it was confirmed that the ion flux at the substrate increased with increasing coil magnetic field with ion energies corresponding to the applied bias. The increased ion flux assisted by the magnetic field produced by the solenoid coil aids in the stabilization of NaCl B1 crystal structure without introducing Ar ion implantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.