Abstract

It is known that a high-power laser propagating through an underdense plasma can acquire a minimum spot size due to relativistic self-focusing. Beyond the focus, the nonlinear refraction starts weakening, and the spot size of the laser increases, showing periodic self-focusing/ defocusing behavior with the distance of propagation. To overcome the defocusing, we propose the introduction of a localized upward plasma density ramp. In the presence of an upward ramp of plasma density, the laser beam obtains a minimum spot size and maintains it with only a mild ripple. For suitable parameters of the laser and the plasma, we have deduced conditions for the self-focusing. This kind of plasma density ramp may be observed in a gas-jet plasma experiment and resembles a plasma lens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call