Abstract

The build-up of plasma parameters following the H-mode transition in JET has been analysed in view of its consequences for the alpha power evolution in the access to burning plasma conditions in ITER. JET experiments show that the build-up of plasma temperature both at the plasma core and the plasma edge occurs in timescales comparable to the energy confinement time. In contrast, the evolution of the edge and core densities differs strongly depending on the level of plasma current in the discharge and of the associated NBI penetration. For higher plasma current H-mode discharges (Ip > 2.0–2.5 MA, depending on plasma shape), with naturally higher plasma densities for which NBI penetration is poorer, the core density evolves in much longer timescales than the edge density leading to the formation of rather hollow density profiles. These hollow density profiles persist for timescales of several energy confinement times until they are usually terminated by a sawtooth. Modelling of the JET experiments with JETTO shows that the density build-up following the H-mode transition can be described with a purely diffusive model, despite the low collisionalities of high current H-mode plasmas at JET. The consequences of these JET experimental/modelling findings for the access to burning plasma conditions in the ITER QDT = 10 scenario are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.