Abstract

We have developed a computer-controlled infusion pump to achieve rapidly and then maintain stable plasma thiopental concentrations in rats. Initially we derived the parameters of a triexponential pharmacokinetic model for thiopental, administered as a brief infusion to 10 rats, using nonlinear regression and standard pharmacokinetic equations. These parameters were incorporated into the pharmacokinetic model of a computer-controlled infusion pump. In a second group of animals this device was used to maintain three consecutive target thiopental concentrations ranging from 5 to 100 micrograms/ml in a stepwise fashion. Arterial blood gases were kept normal through controlled ventilation when necessary. The plasma thiopental concentrations in this second group of animals were generally higher than the target concentrations. The bias in pump performance (median prediction error) was +25%, and the inaccuracy (median absolute prediction error) was 26%. We fit the parameters of a three-compartment model to the plasma thiopental concentrations observed in the second group of animals. This produced a second set of thiopental pharmacokinetic parameters with the unique characteristic of having been derived from a computer controlled infusion study. These parameters were tested prospectively with a computer-controlled infusion pump in a third group of animals. This second set of thiopental pharmacokinetic parameters performed better, with a median prediction error of 0% and a median absolute prediction error of 15%. This study shows that it is possible to achieve rapidly and maintain steady plasma thiopental concentrations in the rat. Our results suggest that it is feasible to derive robust pharmacokinetic parameters from unusual drug dosing approaches, such as employed by a computer-controlled infusion pump.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.