Abstract

This study investigated the processes for the destruction of phenol and its derivatives (resorcin and pyrocatechol) in aqueous solutions under the action of an oxygen dielectric barrier discharge (DBD) at atmospheric pressure in the presence or absence of catalysts in the plasma zone. It was shown that the DBD had a high decomposition efficiency for phenol and its derivatives (up to 99%). Phenol was the most stable and pyrocatechol was the least. In a plasma-catalytic hybrid process, the effective rate constants for phenol, resorcin and pyrocatechol decomposition were 11, 4 and 2.5 times higher, respectively, than those for the DBD treatment without catalysts. The process also resulted in a 1.4, 1.6 and 1.2 times higher rate of carboxylic acid formation for phenol, resorcin and pyrocatechol, respectively. The fractional conversion into the respective carboxylic acids reached 56% for phenol and 68% for resorcin and pyrocatechol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call