Abstract

A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO2/γ-Al2O3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37–40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO2/γ-Al2O3; while it was 10%–20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O3 catalyst reactor with the same CeO2/γ-Al2O3 catalyst, indicating that O3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O3 adsorption on CeO2/γ-Al2O3 promotes the production of adsorbed O2− and O22‒, which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO2/γ-Al2O3 catalyst. H2O inhibits benzene decomposition; however, it improves CO2 selectivity. The deactivated CeO2/γ-Al2O3 catalyst can be regenerated by performing discharges at 100 °C and 192–204 J/L. The decomposition mechanism of benzene over CeO2/γ-Al2O3 catalyst was proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.