Abstract
ObjectiveTo examine the association of bradykinin and related peptides with the development of diabetic nephropathy lesions in 243 participants with type 1 diabetes (T1D) from the Renin-Angiotensin System Study who, at baseline, were normoalbuminuric, normotensive and had normal or increased glomerular filtration rate (GFR).DesignPlasma concentrations of bradykinin and related peptides were measured at baseline by quantitative mass spectrometry. All participants were randomly assigned at baseline to receive placebo, enalapril or losartan during the 5 years between kidney biopsies. Kidney morphometric data were available from kidney biopsies at baseline and after 5 years. Relationships of peptides with changes in morphometric variables were assessed using multiple linear regression after adjustment for age, sex, diabetes duration, HbA1c, mean arterial pressure, treatment assignment and, for longitudinal analyses, baseline structure.ResultsBaseline median albumin excretion rate of study participants was 5.0 μg/min, and mean GFR was 128 mL/min/1.73 m2. After multivariable adjustment, higher plasma concentration of bradykinin (1–8) was associated with greater glomerular volume (partial r = 0.191, P = 0.019) and total filtration surface area (partial r = 0.211, P = 0.010), and higher bradykinin (1–7) and hyp3-bradykinin (1–7) were associated with lower cortical interstitial fractional volume (partial r = -0.189, P = 0.011; partial r = -0.164, P = 0.027 respectively). In longitudinal analyses, higher bradykinin was associated with preservation of surface density of the peripheral glomerular basement membrane (partial r = 0.162, P = 0.013), and for participants randomized to losartan, higher hyp3-bradykinin (1–8) was associated with more limited increase in cortical interstitial fractional volume (partial r = -0.291, P = 0.033).ConclusionsHigher plasma bradykinin and related peptide concentrations measured before clinical onset of diabetic nephropathy in persons with T1D were associated with preservation of glomerular structures, suggesting that elevations of these kinin concentrations may reflect adaptive responses to early renal structural changes in diabetic nephropathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.