Abstract

An impulsive event observed from the nightside geostationary orbit by the GEOS-2 European satellite is analysed in detail in the case of a very quiet magnetosphere. It is characterized by a very sharp and steep plasma density gradient observed near 2230 L.T. A quite detailed picture of the situation can be sketched as a result of the GEOS-2 set of experiments. The observations roughly organize themselves as follows along the geostationary orbit: an intense and well localized d.c. electric field appeared between the outbound crossing of the plasmapause and local midnight; at the same time a sudden ULF activity arose probably indicating the presence of field-aligned currents; GEOS-2 then entered a quieter plasmasheet where clear diamagnetic effects are evidenced. These observations are consistent with a stabilization of a possible interchange instability, which would maintain the density gradient at the plasmapause. The validity of the plasma density measurements which are made through an active wave method is discussed in connection with the 2 keV mean energy of the plasmasheet particles. The macroscopic evolution equation of the plasma bulk velocity is considered. It appears that the gradients of the macroscopic drift velocity of the plasma may have a non-negligible effect rendering invalid the unsophisticated scheme of a balance between kinetic and magnetic pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call