Abstract

Blood-based biomarkers (BBMs) are of growing interest in the field of Alzheimer's disease (AD) and related dementias. This study aimed to assess the ability of plasma biomarkers to 1) predict disease progression from mild cognitive impairment (MCI) to dementia and 2) improve the predictive ability of magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) measures when combined. We used data from the Alzheimer's Disease Neuroimaging Initiative. Machine learning models were trained using the data from participants who remained cognitively stable (CN-s) and with Dementia diagnosis at 2-year follow-up visit. The models were used to predict progression to dementia in MCI individuals. We assessed the performance of models with plasma biomarkers against those with CSF and MRI measures, and also in combination with them. Our models with plasma biomarkers classified CN-s individuals from AD with an AUC of 0.75±0.03 and could predict conversion to dementia in MCI individuals with an AUC of 0.64±0.03 (17.1% BP, base prevalence). Models with plasma biomarkers performed better when combined with CSF and MRI measures (CN versus AD: AUC of 0.89±0.02; MCI-to-AD: AUC of 0.76±0.03, 21.5% BP). Our results highlight the potential of plasma biomarkers in predicting conversion to dementia in MCI individuals. While plasma biomarkers could improve the predictive ability of CSF and MRI measures when combined, they also show the potential to predict non-progression to AD when considered alone. The predictive ability of plasma biomarkers is crucially linked to reducing the costly and effortful collection of CSF and MRI measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call