Abstract

To support the scenario design for the upcoming long-pulse high-performance campaign of Wendelstein 7-X, this work presents a study of high-beta full-field 3D equilibria obtained with the HINT code. For three magnetic configurations of different edge-ι, the effects of both overall pressure and pressure profile changes on the magnetic topology are analyzed. Anisotropic diffusion modeling is used to obtain estimates of the conductive heat load distribution both on the divertor and other plasma-facing components in finite-beta magnetic configurations. For the magnetic standard configuration, limitations of the model are outlined by comparing measured and predicted heatloads by performing a linear regression of the main strike-line position against various plasma parameters in both the experimental and the simulated device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.