Abstract

Plasma-based microwave power limitation in a suspended microstrip transmission line integrating a micro hollow cathode discharge (MHCD) in its centre is experimentally and numerically studied. Transient and steady state microwave power measurements exhibit a limitation threshold of 28 dBm and time responses of 25 microseconds. Intensified charge-coupled device imaging shows that microwave breakdown occurs at the top of the MHCD. The plasma then extends towards the microwave source within the suspended microstrip transmission line. Besides, a self-consistent model is proposed to simulate the non-linear interaction between microwave and plasma. It gives numerical results in agreement with the measurements, and show that the plasma expansion during the transient response is related to a shift between the ionization source term and the electron density maximum. The propagation speed, under the tested conditions, depends mainly on the stepwise ionization from the excited states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call